1. Motivation:

Relations can be useful for two reasons:

1. Multi-Target Tracking, e.g.,
 - two objects moving together,
 - two players in the same team

2. Activity Recognition tasks, e.g.,
 - a "waving-hand" to say "Hello" vs a "waving-hand" to call a taxi

2. Basic definitions:

 - **Relational Domain**: the set of objects and relations between them.
 - **Relational State**: the set of the attribute values of the objects in the Domain and their relations.

 \[S = \begin{pmatrix} s \mid A \\ r \mid A \end{pmatrix} \]

 \(\text{State evolves with time} \)

3. Relational Dynamic BNs:

 - **RDBNs**: pair of RBNs
 - intra-slice distribution -> sensor model;
 - inter-slice distribution -> transition model
 - **RBNs**: set of nodes (one for each attribute and/or relation) whose causality is encoded as a directed graph

4. Inference:

 Under Markov assumption, Bayesian Filter algorithm:

 \[\text{bel}(s,t) = p(s_t | z_{1:t}) = \sum_{s_{t-1}} p(s_{t-1}, s_t | z_{1:t}) \text{bel}(s_{t-1}) ds_{t-1} \]

5. Assumptions:

 Relations in the State result in correlating the State of different objects between them

 - Sensor model: part of the state relative to relations, \(s' \), not directly observable
 \[p(z_t | s_t) = p(z_t | s_{t-1}, s'_t) = p(z_t | s'_t) \]
 - Transition model:
 \[p(s_t | s_{t-1}) = p(s_{t-1}, s'_t | s_{t-1}, s'_t) = p(s_{t-1}, s'_t) \]

 1. Tracking in case of missing values

6. Relational Particle Filter:

 Algorithm 1: Relational Particle Filter algorithm

 \[X_t = \text{RPF}(X_{t-1}, z_t) \]
 for all \(m = 1 : M \) do
 1. hypothesis for the state of the objects:
 \[x^{(m)}_{t-1} \sim p(z_t | s_{t-1} = x^{(m)}_{t-1}) \]
 2. hypothesis for the state of the relations:
 \[x^{(m)}_t = p(s_{t-1} | s_t = x^{(m)}_{t-1}) \]
 3. compute weights:
 \[\omega^{(m)} = p(z_t | x^{(m)}_{t-1}) \]
 for all \(m = 1 : M \) do
 4. normalize weights:
 \[\tilde{\omega}^{(m)} = \frac{\omega^{(m)}}{\sum_{m=1}^{M} \omega^{(m)}} \]
 for all \(m = 1 : M \) do
 5. draw \(s \) with probability \(\text{bel}(s^{(m)} | x^{(m)}_{t-1}) \) and add \(X_t^{(m)} \) to the set \(X_t \).

7. Experiments and results:

1) Tracking in case of missing values

2) Tracking in the ships domain